Step of Proof: lt_int_eq_true_elim
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
lt
int
eq
true
elim
:
1.
i
:
2.
j
:
3.
i
<z
j
= tt
i
<
j
latex
by ((RW bool_to_propC 3)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
,
P
&
Q
,
x
:
A
.
B
(
x
)
,
P
Q
,
P
Q
Lemmas
assert
of
lt
int
,
eqtt
to
assert
,
assert
wf
,
bool
wf
,
iff
transitivity
origin